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Abstract

A model is given for the thermal conductivity of uncompressed, binary, packed-pebble beds of small and large solid

spheroids in a static gas. It requires no adjustable parameters if the conductance of the solid is much greater than that of

the gas, and the heat flow through the physical contacts between spheres is negligible compared to that from either

gaseous conduction or radiation. The model is in excellent agreement with experiment, provided one assumes there is an

average gas gap next to the large spheres, of width about 0.7 of the radius of a small particle.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The binary beds considered here contain two sizes of

particles, with one type of particle having typically 10

times the radius of the other so that the tiny particles can

easily enter the spaces between the larger ones. There-

fore, the tiny spheroids can literally be poured into the

bed of large spheroids to intermix well. Such beds are of

particular interest in the proposed breeder blanket in a

fusion reactor, where a binary bed of large and small

beryllium spheroids may be used as a neutron multiplier

[1]. The cost of making accurate measurements on test

beds is high in both time and apparatus, so considerable

effort has gone into developing models which can be

used predictively to optimize bed performance. The ideal

model is one which can predict the thermal conductivity

directly from measurements on the constituent particles.

The model discussed here is shown to be successful in
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doing this, as tested against the one set of experimental

data for which the particle parameters have been ade-

quately measured.

An exact analytical expression for the bed conduc-

tivity is not possible even for an idealized, perfectly

regular packing of the spheres because the conductivity

varies spatially in a complex fashion with temperature

and pressure, and has different dependencies for the

solid, gas, and radiative contributions. As a result, ex-

isting models are of two basic types. The first is the fi-

nite-difference numerical model which can treat the

three-dimensionality of the problem by dividing the bed

into a great many cells with the temperature and heat

flow matched at their boundaries, but it can be difficult

to extract the relative importance of different conduction

pathways from such computer models. Examples of

numerical models for binary beds are those of Ades and

Peddicord [2] (the AP model), and of Adnani et al. [3]

(the ACRA model). Both of these models first calculate

the thermal conductivity of a bed of the small spheroids

and then treat them as a homogenous material inter-

spersed between the large spheroids. However, the AP

model still requires an experimentally determined fitting
ed.
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Nomenclature

Acpl base area of the close-packed unit cell of the

large spheroids

Avl base area of the ‘‘void’’ cell for the large

spheroids

D diameter of a gas molecule

Gc conductance though the contact points be-

tween contacting spheroids

Gcp conductance of the close-packed region of

the unit cell

Gg conductance through the gas layer of aver-

age width w between the surface of a large

sphere and the adjacent packed tiny spheres

Ggvt gas conductance across the void region of

the tiny spheres

Gi gas conductance through the ‘‘inner’’ gap

between contacting spheres where

2k=3 > gap

Go gas conductance through the ‘‘outer’’ gap

between contacting spheres where

2k=3 < gap

Gr conductance between contacting spheres by

radiation

Grvt conductance by radiation across the void

region of the tiny spheres

Gs conductance through a solid sphere

Gt overall conductance through the tiny

spheres

Gv conductance though the ‘‘void’’ region in

the unit cell

h average height of the short-range surface

roughness

j temperature jump distance at surface

k Boltzmann’s constant

K0 thermal conductivity of the gas

Kt overall conductivity of a region occupied by

tiny spheres

l width of the gap between two surfaces con-

fining the gas

Ll height of the unit cell of large spheroids

Lo distance between two contacting large

spheres at the maximum ingression of small

spheres, in the Ades and Peddicord model

n molecular number density (n ¼ P=kT )
Nc number of effective contact points per unit

cell

pl packing fraction for the large spheroids

P gas pressure

r average radius of a tiny spheroid

rtt radial distance from the point of contact of

two large spheroids to the centre of the

nearest tiny sphere

rk radial distance to the point at which the

separation of the large spheroids is 2k=3
R average radius of a large spheroid

(s) indicates two conductances in series

T temperature in Kelvins

Vl volume of the overall unit cell

w average width of the gap between a large

spheroid and the interspersed tiny ones

Greek symbols

d area of direct contact between adjacent

spheroids

k molecular mean free path

h polar angle measured from the contact point

hmax maximum polar angle of integration about

the contact point

htt polar angle to the centre of the nearest tiny

sphere

hkl polar angle at which the separation of the

large spheroids is 2k=3

Subscripts

l large sphere

t tiny sphere
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parameter from the single-particle beds. Unlike many

other models, the ACRA model specifically includes the

effect of surface roughness on the thermal conductivity.

However, the roughness parameters used are also ob-

tained by fitting to experimental data on the thermal

conductivity of the bed.

The second type is the analytical model which breaks

the problem into a relatively few distinct conduction

paths (the contact between pebbles, the gas between

them, radiation, etc.) and calculates the overall bed

conductance as a series/parallel combination of the in-

dividual conductances for these paths. To make such
models mathematically tractable, one normally treats

the heat flow as being in straight lines within and be-

tween the spheres. The advantage to the analytical

model, if successful, is that it enables one to evaluate

easily the relative contributions of each pathway as a

function of temperature, gas pressure, and particle size

and roughness, and use this in the bed design. Either

type of model obviously must involve averages over

possible distributions of the particles. The appropriate-

ness of the assumptions and approximations used in

either type must be evaluated, in the end, from the

agreement between the theoretical predictions and ac-
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tual experimental data. If the agreement is good for beds

of several different materials, gases, and particle size and

roughness, then one has some confidence in using the

model predictively in other situations.

Analytical models have been developed for binary

beds, using the single-particle theories of Schl€uunder,
Zehner, and Bauer (SZB) [4] or Hall and Martin [5] and

including the binary nature by averaging [6,7] over cells

of different pebble sizes and materials using a prescrip-

tion similar to that by Okazaki et al. [8]. These models

either weight each combination of particle–particle

contact by the volume fraction of each particle, or treat

the bed as consisting of single-material particles and

average the properties of the solid components using the

volume fractions. However, these weighting are more

applicable to situations in which the two kinds of par-

ticles are uniformly interspersed as with particles of

comparable size, rather than the present case in which

the tiny particles segregate together in the gaps between

the large particles. When used with particles of compa-

rable size these models gave results which agreed with

experiment within 30% [6] to 100% [7]. However, they all

used experimental thermal conductivity data for single-

particle beds to fit the value for the contact area between

adjacent particles.

The present paper develops an analytical model for

binary beds based on a recent model [9] for a bed of

single-size particles (henceforth referred to as a

‘‘monobed’’). The monobed model can predict the

thermal conductivity of an uncompressed bed with an

accuracy of about 15% over a wide range of temperature

and pressure with no adjustable parameters, provided

that two fairly common conditions are satisfied: (1) the

conductance of a single solid particle is much greater

than other conductances, and (2) the heat flow through

the physical contacts between spheres is negligible

compared to that from either gaseous conduction or

radiation, as will generally be true of uncompressed beds

except at very low gas pressures and low temperatures.

(In fact, the model does provide for the contact con-

ductance, but this requires knowledge of the contact

area which is not generally known, although it may be

approximated theoretically as discussed by Batchelor

and O’Brien [10].)

The monobed model differs from most earlier ones in

that it includes the effect of particle roughness explicitly.

Moreover, an experimental procedure has been devel-

oped [9] for measuring the particle roughness which

therefore eliminates the need for any adjustable pa-

rameters. Knowledge of the roughness is critical because

it determines the minimum average gap between parti-

cles, which strongly affects the gaseous conductance. The

monobed model gave results in good agreement, as

discussed previously [9], with five different beds of alu-

mina spheroids of different sizes measured by two dif-

ferent research groups, and for a bed of beryllium
particles in two different gases measured by a third

group. These results showed that, for many uncom-

pressed beds, gaseous conduction between spheroids is

the primary conduction mechanism except at high tem-

peratures where radiation predominates, or when both

the temperature and gas pressure are very low so con-

duction via direct contact predominates. This justifies

the neglect of the contact conductance in such cases. The

model could not be compared with other published ex-

perimental conductivity data because accurate values for

the particle roughness have almost never been published.

The binary model is based on the monobed model,

but also differs from the other analytical models dis-

cussed above by incorporating the binary nature of the

bed by treating the small spheres between the large ones

as a homogenous material as in the AP and ACRA

numerical models, rather than averaging over the vol-

ume fractions of the two kinds of particles.

For beds in which the particles are compressed to-

gether, as in constrained beds of relatively soft materials

with substantial thermal expansion, either the assump-

tion of only point contacts or the use of the measured

roughness height before compression may not be valid.

For example, it has been shown that the bed conduc-

tivity has a strong dependence on external pressure for

beds of aluminum, beryllium, and lithium zirconate

particles [11], and recent papers have shown a large

hysteresis in the thermal conductivity due to differential

expansion between the bed and its container [1,12]. Even

in such cases, our monobed and binary bed models

should still be useful as the starting points in developing

models which do take bed compression into account,

since the contact conductance and particle roughness are

both included in our models. The theory of Batchelor

and O’Brien [10] may be useful for addressing the con-

tact conductance.
2. Theory

As in the monobed model, the deviation from close-

packing of the spheroids, large or small, has been in-

corporated by separating the packing into two fractions:

one where the spheres are close-packed and one where

deviations from the close-packed structure have left re-

gions void of any of these spheres. In the binary bed, of

course, the ‘‘void’’ regions left among the large spher-

oids will actually be filled with tiny spheres, as will the

gaps between contacting large spheres. In these regions,

the conductivity will be considered as uniform and equal

to the value obtained from the monobed model for the

tiny spheres taken alone.

In what follows, the subscripts �l’ and �t’ will refer to
the large and tiny spheroids, respectively. The overall

unit cell used in the monobed model consists of a close-

packed cell in parallel with a void cell. For the large
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spheres, the close-packed cell has area Acpl ¼ 2
ffiffiffi
3

p
R2

perpendicular to the direction of heat flow and height

Ll ¼
ffiffiffiffiffiffiffiffi
8=3

p
R, and contains one particle. The void cell has

area Avl and the same height Ll. The volume of the

overall unit cell is Vl ¼ AcplLl þ AvlLl. Knowledge of the

packing fraction pl � 4
3
pR3=Vl gives Avl ¼ ½

ffiffiffiffiffiffiffiffi
2=3

p
p= pl �

2
ffiffiffi
3

p
�R2. Similar expressions apply for the tiny spheres.

We let Gcpl and Gvl be the conductances of the close-

packed and ‘‘void’’ regions of the large spheres with

their interspersed tiny spheres, to give an overall bed

conductance G ¼ Gcpl þ Gvl.

The binary model is based on the geometry sketched

in Fig. 1. The large and tiny spheres have average radii R
and r, respectively. The short-range surface roughness,

of average height h, decreases the gaseous conductivity

between contacting spheres by increasing the average

gap between them. Therefore, in the close-packed re-

gions, the model treats the spheroids as being perfect

spheres, separated at their contact points by a short

cylinder of cross-sectional area d and length 2h. h is the

polar angle measured from the vertical, and hkl is the

polar angle for which the separation of the two spher-

oids is equal to 2=3k, where the molecular mean free

path is k. (The average distance that a gas molecule

travels perpendicular to a surface before colliding with

another molecule is 2=3k [13, p. 264].) From [14, p. 178]

one has

k ¼
ffiffiffi
2

p
npD2

� ��1

; ð1Þ

with n ¼ P=kT being the molecular number density, D
the molecular diameter, P the gas pressure, T the tem-

perature in kelvins, and k Boltzmann’s constant. Both

h and k will be assumed to be much less than R except

for k at pressures close to zero. Reference to Fig. 1 gives,

for small hkl, hkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
k� 2hl

� �
=R

q
radians and rk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
k� 2hl

� �
R

q
for 2

3
k > 2hl, but hkl ¼ 0 and rk ¼ 0 for

2
3
k6 2hl.
Fig. 1. Model parameters in the close-packed region: (a) geo-

metrical parameters and (b) conductances.
As sketched in Fig. 1(b), the heat flow will be rep-

resented by a number of conductances in series and

parallel. The conductances considered for either the

large or tiny spheroids are the following, where the �l’
and �t’ subscripts have been dropped for simplicity. Gs is

through the solid spheroid, and Gr is by direct radiation

between the spheroids. For gaseous conduction, two

regions exist between adjacent spheroids: an ‘‘inner’’

region of radius rk about the contact point, for which the

gap 2h between the two spheroids is less than 2
3
k, with a

conductance Gi; and an ‘‘outer’’ region for which the

gap is greater than 2
3
k, with conductance Go. The gas

conductivity has different values in these two regions [9].

The conductance through the physical contact of area d
is Gc. Following the monobed work, it is assumed that

Gc is negligible compared to the other conductances with

which it is in parallel, so it will not be considered further.

It is a simple matter to include it theoretically when this

assumption is not justified, but it is not simple to obtain

a value for it without experiment. Additional conduc-

tances must be included in the void fraction of the tiny

spheres: Grvt by radiation and Ggvt by gaseous conduc-

tion across the void. These conductances are included in

the calculation of Kt, the total effective thermal con-

ductivity for the regions filled by tiny spheres as a

function of temperature and pressure. Kt is determined

exactly as for the monobed in the earlier model [9];

therefore the details of Kt will not be repeated here. The

full expressions for all the conductances involved are

given in the monobed paper.

The conductances between adjacent large spheres are

modelled as in Fig. 2, which shows the region near the

contact point of two large spheroids. The region as-

sumed to be occupied by the tiny spheres is shown cross-

hatched, with the dashed circle representing the closest

position of a tiny sphere to the point of contact of the

large spheres. The parameter rtt is the distance from the

point of contact to the centre of the nearest small sphere,

and the corresponding polar angle is htt ¼ arcsinðrtt=RÞ.
The conductance through the region filled with tiny

spheres is modelled as a conductance Gg through a gas
Fig. 2. Geometrical parameters and conductances near the

point of contact between two large spheroids.
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layer of average width w between the large spheres and

the tiny spheres, in series with the conductance Gt

through the tiny spheres. The conductance Gg occurs at

both sides of the small sphere region. The value of w in

the model is an average over the actual width that will

vary from zero for actual contact between the tiny and

large spheres up to an extreme maximum of R in the

occasional case of an arching of the tiny spheres to leave

a void between the large spheres. The presence of such a

gas gap with width of order r is seen when tiny spheroids

are poured between large ones placed between two glass

plates, even after vibrating to help the small spheroids

settle as much as possible. Moreover, the inclusion of

this gas gap in the model was necessary to obtain sat-

isfactory agreement with the experimental results. In

fact, the series conductance of two gas gaps of width w is

the same as the conductance of a single gap of width 2w,
so the inclusion of this gap allows for differences be-

tween the gaps at the upper and lower large spheres.

Assuming that temperature differences within a given

large sphere are much smaller than the temperature

difference between two adjacent large spheres, which will

be true if the conductance across a large sphere is much

larger than the conductance between two spheres as is

the case when Ks is large, Gt can be calculated as

Gt ¼
Z hmax

htt

Kt

dA
l
; ð2Þ

where

dA=l ¼ 2pR sin h cos hRdh=ð2R� 2R cos hþ 2h� 2wÞ;

which gives

Gt ¼ KtpfR½cosðhmaxÞ � cosðhttÞ� þ ðRþ hlÞ
� ½lnðR� R cosðhmaxÞ þ hl � wÞ�
� ½lnðR� R cosðhttÞ þ hl � wÞ�g: ð3Þ

Here dA is the incremental area perpendicular to the

direction of heat flow and l is the distance over which

the heat is flowing through dA. The upper limit of in-

tegration of hmax ¼ 60� from the contact point is chosen

as being about the angle between contact points, but its

exact value is not important because most of the con-

duction occurs near the contact point where l is shortest
as discussed previously [9].

The conductance Gg across a gap of width w is cal-

culated as in Eq. (2) but with a constant value of

l ¼ wþ j where j is the temperature jump distance at a

surface [9]. Integrating gives

Gg ¼ K0pR2ðcos2 htt � cos2 hmaxÞ=ðwþ jÞ; ð4Þ

where K0 is the conductivity of the gas [9].

The effective number of contact points between ad-

jacent spheres in the unit cell is Nc ¼ 1:5 as discussed

previously [9]. We define the symbol (s) to mean the series
combination of conductances G1 and G2 with

G1ðsÞG2 ¼ G1G2=ðG1 þ G2Þ. The overall conductance G
of the bed is then calculated as follows (see Figs. 1 and 2).

G ¼ Gcpl þ Gvl; ð5Þ

where

Gcpl ¼ NcfGslðsÞ½Grl þ Gcl þ Gil þ Gol þ ðGgðsÞGtðsÞGgÞ�g

and

Gvl ¼ KtAvl=Ll;

where Kt is the effective conductance of a bed of tiny

spheres, from Eq. (4) of Ref. [9], and

Gt ¼ Gcpt þ Gvt:

Here,

Gcpt ¼ fGrt þ Nc½GstðsÞðGit þ Got þ GctÞ�g

and

Gvt ¼ Grvt þ Ggvt:

The last three equations are all from Eq. (5) of Ref.

[9]. The individual expressions for the different conduc-

tances are given in Ref. [9] and so will not be repeated

here. The one exception is Grl which is the radiative

conductance only through the area between the large

spheres not occupied by tiny spheres, so is over an area

of only pr2tt rather than Acpl as in [9]. One first calculates

Kt for the relevant temperatures and gas pressures using

the monobed equations for the tiny spheres, and then

inserts its values into Eq. (5) above. The Sigma Plot code

for both the monobed and binary beds is provided on

the web [15].
3. Comparison with experiment

There is very little published experimental data with

which to compare the current model, because it depends

strongly on the roughness of the spheroids which has

generally not been measured accurately enough to be

useful, if at all. The only binary bed data, of which we

are aware, for which this has been done is that of Enoeda

et al. [16] with alumina spheres of diameter 0.3 and 3

mm, for which we have previously measured the

roughness [9]. The experimental data for beds of each of

these spheroids under 1 atm of He and from 400 to 800

K [16] has already been fitted successfully using the

monobed model [9], as reproduced in Fig. 3 (open circles

and dotted lines). This figure also shows the experi-

mental data for the binary bed as solid circles, with the

solid, short-dash and long-dash lines being theoretical

calculations under different assumptions (the long-dash

line coincides almost exactly with the solid line). As ex-

pected, the conductivity of the binary bed is substantially
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above the monobed values because most of the void

areas between the large spheres have been filled by the

tiny spheres and alumina has a much higher thermal

conductivity than does He gas. The short-dash line at the

top gives the conductivity if there were no gas gap be-

tween the large spheres and the small ones (w ¼ 0). It is

seen that the calculated thermal conductivity is too large

with this assumption. The solid line is the preferred

model, for which a gas gap of width w ¼ 0:7r has been

included at both surfaces of the contacting large spher-

oids. It is important to note that the value of 0:7r was a
fitted parameter in the development of the model, but is

not an adjustable parameter in the use of the model. This

statement is supported by the good agreement that

w ¼ 0:7r gives with results from measurements on a bed

of U0:85Pu0:15C pebbles as discussed below. Moreover, its

value is reasonable: obviously 2r is an upper bound for

this gap width since a larger value would allow more tiny

spheres to move into the gap. In addition, the theoretical

line gives good agreement with the form of the temper-

ature dependence of the data.

The finite-element AP model [2] does not include a

gas gap (w ¼ 0), but does assume that the separation Lo

between two contacting large spheres at the point of

maximum ingression of tiny spheres in Fig. 2 is

Lo ¼ 5:578r, as they determined by fitting their con-

ductivity model to experimental data. (Ades and Ped-

dicord point out that physically the tiny spheres are

often observed to be much closer to the large spheres

than this.) The long-dash line in Fig. 3 (which coincides

almost exactly with the solid line) uses our model but

with these AP-model assumptions. This model fits the

experimental data just as well as our model using

w ¼ 0:7r, showing that our introduction of a gas gap
produces effectively the same reduction in the bed con-

ductivity as the AP-model introduction of Lo. However,

the use of a gas gap of width 0:7r next to the large

spheroids is more consistent with observations of the

actual particle packing. The good agreement between

our model using the AP value of Lo, and using the value

w ¼ 0:7r, suggests that the fitted value of w ¼ 0:7r
should apply generally to other beds, and so is not an

adjustable parameter in the use of the model. Moreover,

changing w by 30% to 0:5r changes the calculated value

of the thermal conductivity by only 6%, which is less

than the average 15% accuracy obtained with the

monobed model [9] in any case, so the model is insen-

sitive to the exact value of w.
Our model with w ¼ 0:7r fits the experimental alu-

mina data essentially perfectly, compared to a 20%

agreement of the finite-difference Ades and Peddicord

model [8] with U0:85Pu0:15C pebbles in helium gas.

However, the Ades and Peddicord model relies on ex-

perimental measurements for the value of the bed ac-

commodation coefficient whereas our model requires

only experimental parameters of the individual particles

as long as the contact conductance is negligible. The

monobed model gave agreement with experiment to

about 5% for the alumina spheroids considered here, as

can be seen by the dotted curves in Fig. 3. This suggests

that our binary bed model should work perform roughly

as well as the monobed model does. Overall, the

monobed model was generally good to about 15% [9], so

one might expect similar results for the binary bed

model.

The finite-difference ACRA model [3] does include

the effect of roughness on the conductivity, modelling it

by small cylinders sticking out of the particles which

contact adjacent spheres. The dimensions of these cyl-

inders were determined by fits to experimental data for

beds of single-size aluminum spheres and for aluminum

powder, and then these values were used in the model

for a binary bed. The agreement with experiment was

good, but again required fitting to experimental data to

obtain some of the particle parameters. As discussed in

the introduction, other analytical models have also been

used to give reasonable agreement with experimental

measurements on binary beds, but in all cases some

experimental fitting parameters on actual beds were re-

quired unlike the present model which depends on

measurements obtainable from the particles alone.
4. Conclusions

An analytical model has been developed for the

thermal conduction of an uncompressed binary bed of

small and large spheroids in the presence of a static gas.

It agrees well with experiment in the single known case

for which the particle roughness has been adequately
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measured, but more testing is clearly necessary. The

model uses the reasonable assumption that there is, on

average, a narrow gas gap of 0.7 times the radius of a

small particle at the interface between the small and

large particles due to local irregularities in the packing,

an assumption which is consistent with other published

data on a different bed. Given this, the model has no

experimental fitting parameters as long as the conduc-

tance of a solid spheroid is much greater than all other

conductances in the model, and the conductance of the

direct contact between spheroids is negligible which will

often be true except at very low gas pressure and low

temperature. It is important that future experimental

studies of binary beds include careful measurements of

particle roughness to allow testing of theoretical models.
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